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TOKENIZING ON SCALE
Preprocessing large text corpora  
on the lexical and sentence level

Abstract When comparing different tools in the field of natural language processing (NLP), the quality 
of their results usually has first priority. This is also true for tokenization. In the context of large and 
diverse corpora for linguistic research purposes, however, other criteria also play a role – not least suffi­
cient speed to process the data in an acceptable amount of time. In this paper we evaluate several state­of­
the­art tokenization tools for German – including our own – with regard to theses criteria. We conclude 
that while not all tools are applicable in this setting, no compromises regarding quality need to be made.

Keywords Corpora; tokenization; German; software

1. Introduction

Tokenization, that is, the segmentation of texts into lexical units, is a fundamental prepro­
cessing step for lexicographic work with corpus linguistic resources. Although tokenization 
is one of the simpler tasks in these processing steps, it is often critical because early errors 
can affect all analyses and procedures based on it. Accordingly, high accuracy in tokeniza­
tion is usually the outstanding criterion in the evaluation of tools used for this purpose. 
Depending on the area of application, other criteria may also play an important role in the 
evaluation of tokenization tools. The evaluation presented here is based on a scenario in 
research data preparation, more precisely: the tokenization of DeReKo, the German Refer­
ence Corpus. With currently more than 50 billion running words, it is a very large and 
constantly growing linguistic data resource, for which not only high accuracy is relevant for 
tokenization, but also a speed that allows the resource to be processed in an acceptable time. 
Other criteria in this scenario is the extensibility of the language model for new linguistic 
phenomena and the adaptability for new or different corpora. Also important is the perma­
nent maintainability of the tools and the reproducibility of its results for research. In this 
article, we evaluate different tools for tokenizing German text data with a special focus on 
the scenario outlined here. Furthermore, we include sentence segmentation in our consider­
ation, since it is often performed in the same processing step. We include two of our own 
implementations in the evaluation and compare them with several off­the­shelf tools that 
we consider state­of­the­art.

2. Tokenization

In corpus technology, tokens represent basic lexical units which are indexed and can be 
addressed in search queries to the corpus. In fact it is sometimes difficult to query for char­
acters that are delimiters in tokenization. The unsegmented characters of a corpus text are 
considered its primary data, and its tokenization serves as a basic layer for searching and for 
higher­level analyses provided as annotations, such as part­of­speech tagging, named entity 
recognition, syntactic parsing, or anaphora resolution. The tokenization scheme is therefore 
crucial for the analyses that can be expressed and represented on the higher levels. Further­Di
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more, tokens are the basis for the calculation of the corpus size and statistical measures 
based on the corpus size and/or token frequencies.

For languages with alphabetical writing systems that use spaces to mark word boundaries 
(such as German), a simple tokenization algorithm consists of using these spaces and punc­
tuation symbols of a text as delimiters and to consider the resulting strings between them 
and the punctuation symbols themselves as tokens. This method leads to meaningful tokens 
in the majority of cases already (s. sec. 4.3).

The bulk of the difficulties with tokenization arises from the potential ambiguity of the 
space and punctuation characters, as in certain cases they should not be considered token 
delimiters but instead parts of tokens. Certain multi­word expressions, such as “ad hoc“, 
“bus driver“ or “heart attack“ in English should under a syntactic perspective be analysed as 
single lexical tokens that just happen to contain the space character. As for punctuation 
characters, there are several cases of when the dot ‘.’ does not represent the full stop termi­
nating a sentence e. g. in abbreviations (“etc.”; “Fa.”, short for Firma, ‘company’; “bzw.”, short 
for beziehungsweise, ‘respectively’), in ordinary numbers and enumerations (“1.”, “a.)”, “B.”), 
as part of email addresses or URLs, and in several other cases (cf. Proisl/Uhrig 2016). Simi­
larly, other punctuation symbols are ambiguous between delimiters and other uses, for in­
stance the hyphen in “Hamburg­München” (naming a distance, leading to three separate 
tokens) vs. in “Reich­Ranicki” (a surname, i.  e. one token), or in the brand name “Yahoo!”, the 
“!” should not be separated. Non­alphabetic characters other than punctuation can also be 
ambiguous between representing a delimiter vs. a regular character that is part of a token, 
e. g. in an arithmetic expression like “5+3”, the “+” is a delimiter, but in “C++”, it should not 
be separated, also cf. the asterisks in an action word like “*grins*” (from grinsen, ‘to grin’; 
separate tokens according to the Tokenization Guidelines of the EmpiriST Shared Task; 
Beißwenger et al. 2015) vs. in a form like “Lehrer*innen” (gender neutral form for ‘teachers’; 
one token). In turn, there are also cases when strings without delimiters actually contain 
separate tokens, mostly when spaces are intentionally or unintentionally omitted as in “er­
hat” for er hat (‘he has’).

In our recent corpora, we have identified five types of phenomena, mostly connected with 
the internet as a media for the distribution of texts, which pose relatively new challenges for 
tokenization by introducing additional ambiguities, or significantly increasing the frequen­
cy of occurrence of certain known ambiguities.

1) The proliferation of unedited text, i. e. texts that contain sloppy or creative uses of spell­
ing, which can also affect the tokenization, as in contracted forms based on the spoken 
language e. g. “haste” (→ hast du; ‘do you have’), “hastes” (→ hast du es, ‘do/here you have 
it’), the omission of spaces (“Hänselundgretel”, Hänsel und Gretel, ‘Hansel and Gretel’), 
the insertion of extra spaces (“Auto Bahn”, Autobahn, german highway system), or an 
iterative use of punctuation symbols (“Drogen!!!!”, ‘Drugs!!!!’) (cf. Bartz/Beißwenger/
Storrer 2013).

2) The proliferation of computer­mediated communication (CMC) idioms used in social 
media which besides displaying features of the spoken language as mentioned above, 
contain new specific uses of punctuational and non­alphabetical characters as in emoti­
cons such as “:­)”, addressing terms (“@heiner”), or action words and phrases (“*lach*”, 
from lachen, ‘to laugh’; “*auf die Nägel blas*”, ‘to blow on the nails’) (cf. Bartz/Beißwenger/
Storrer 2013).
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3) New, token­internal uses of delimiters in gender­conformant spellings as in German 
forms like “Lehrer(­in)”, “Lehrer:in”, “Lehrer/­innen”, “Lehrer/innen”, “Lehrer_innen”, 
“Lehrer*innen” (gender neutral forms for ‘teachers’), “diese*r” (gender neutral form for 
‘this/these/those’), “Frau*” (gender neutral form for ‘woman’).

4) Hypertextual features such as hashtags, mentions, filenames, email addresses, URLs, but 
also XML or HTML markup, Markdown, or WikiCreole source code (see Jurish/Würzner 
2013).

5) The huge quantities of text that the internet offers pose severe processing challenges for 
tokenization in terms of time and space.

Note that different NLP applications or a different focus of linguistic description may re­
quire different tokenization strategies. For instance, when the focus is on syntax/parsing, 
compounds are analysed as one token, whereas for semantic relation or information extrac­
tion, it might be relevant to even tokenize the parts of compounds that are spelt as one word 
(such as “Abgasrückführung”, ‘exhaust gas recycling’). In fact, different NLP tools often 
disagree in their tokenization (s. sec.  4.3), and their tokenization strategies cannot inde­
pendently be considered as correct or incorrect. The interpretation of tokens we adopt is 
closer to a lexicographic reading and might deviate from the preprocessing in some ma­
chine­learning (ML) workflows that are based on dictionary queries and tokenize other 
units to handle out­of­vocabulary situations. We also do not consider tokenizations into 
sub­lexical units such as morphemes.

The task of sentence segmentation is closely related to tokenization due to the central role 
of punctuation symbols and their ambiguity between being a part of a token or terminating 
a sentence. In fact, tokenization and sentence segmentation are often applied in the same 
processing step. Besides the ambiguity of punctuation, sentences or sentence­like units 
might not be delimited by a full stop at all, as for example regularly in the case of headings, 
but also in instances of sloppy writing in CMC. Sentences represent the basic scope of later 
syntactic analyses, and a faulty sentence segmentation renders automatic syntactic parsing 
largely invalid. In corpus technology, the sentence is also the default domain of a query, i. e. 
when querying for and analysing expressions with multiple parts (as in “ADJ N”), it is cru­
cial that no sentence boundary lies between them. Moreover, various licence­related restric­
tions refer to the unit sentence. Consequently, this unit is of great, not only linguistic, impor­
tance in corpus technology.

3. Large Scale Scenario

Our main use case for corpus tokenization represents the preprocessing of the German ref­
erence corpus DeReKo (Kupietz et al. 2018). DeReKo has been compiled at the Leibniz Insti­
tute for the German Language since 1964 and currently comprises more than 50 billion 
running words with an annual increase of more than 2 billion. It is used for a broad range of 
linguistic research on written contemporary German and for this purpose is completely 
tokenized, and morphologically and syntactically annotated multiple times. For researchers, 
access is limited (primarily for licensing reasons) to search engines (COSMAS II and KorAP) 
and further analysis tools. In addition, various derived analysis data such as frequency­based 
wordlists are offered. These different forms of usage also determine the pragmatic token 
definition on which DeReKo is based, which tries to be both “linguistically significant and 
methodologically useful” (Webster/Kit 1992, p. 1106), although compromises must be made 
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for both aspects. This is particularly important to consider with respect to “word” tokens, 
which must follow a lexicographic definition. Idioms and fixed expressions, which consist 
of several, possibly even discontinuous units, can be useful in a lexicological sense, but det­
rimental for search engine use, which is why DeReKo does not take them into account. 
Consequently, we assume, on the one hand, tokens to be the “minimal unit of investigation” 
(Chiarcos/Ritz/Stede 2009, p. 35), and, on the other hand, units that are meaningful for rep­
resentations in syntactic contexts.

With respect to the data, both in terms of size and diversity, there are further pragmatic 
requirements for tokenization. In our evaluation, we emphasize high processing speed with 
large data volumes and limited resources. In the case of DeReKo, this is important with re­
spect to the constant acquisition of data, but is especially necessary when a complete re­to­
kenization of the entire corpus is required, for example, to correct systematic errors while 
maintaining model consistency. The limited technical resources also mean, in our scenario, 
that the procedures should run on commodity hardware – accordingly, we do not consider 
possible performance increases through special hardware (such as GPU support) in this 
analysis.

Furthermore, high quality is of obvious importance, since tokenization is the basis of fur­
ther linguistic analysis steps, and, as Moreau/Vogel (2018, p. 1120) correctly note: “Tokeni­
zation errors can be costly performance­wise, as these errors may propagate through the 
whole processing chain.”

A controllable extensibility of tokenization is of great importance especially with respect 
to new phenomena and new, special corpora. In some cases, prior linguistic knowledge can 
be used for extension, but also specially prepared training corpora. What plays only a minor 
role for our application scenario, but is primary in many other scenarios, is the adaptabil-
ity to other languages and corpora. Even though we have adapted our tools for other lan­
guages, the focus is on German language data.

With regard to the use of processed data for research purposes, other important aspects are 
the maintainability of the solutions and the reproducibility of the results. For maintain­
ability, it is necessary that the solutions are available as open source, which is why we re­
strict the evaluation exclusively to this. Applicability to commodity hardware has already 
been mentioned but is also central in terms of maintainability. In terms of reproducibility, 
the results, but also the errors, should be consistent and comparable across genre and do­
main boundaries. Along with this, a desirable advantage is the reduction of the tokenization 
step to as few tools as possible. Different tokenizers for heterogeneous data, adapted to 
different corpus types, genres, or domains, would not only complicate the traceability and 
thus reproducibility of any tokenization errors, they would also pose a major challenge in 
the handling and maintainability of the full preparation pipeline.

Not to be considered in our scenario are preprocessing steps that may be necessary with 
respect to the specific origin of the data. Since the source data for DeReKo usually come in 
XML or other preprint format, there is no need to perform print­specific preprocessing steps 
from text typesetting, such as merging hyphenated words at line endings or removing marks 
for highlighting (cf. Grefenstette/Tapanainen 1994). The same is true for mis­segmentation 
originating from OCR processes. We also do not take ease of use into account.

In summary, DeReKo tokenization requires fast, accurate and consistent processing of het­
erogeneous data for different linguistic application purposes on commodity hardware. The 
tools to consider should be easily extensible and maintainable. Both the scenario outlined 
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here and the evaluation of state­of­the­art approaches represent only a snapshot. At the 
same time it is an update and an extension of similar studies on tools for different NLP tasks 
in German (Ortmann/Roussel/Dipper 2019), but with a focus on tokenization. In the future, 
evaluations will be carried out with regard to changing scenarios and new developments in 
corpus technology.

4. Evaluation

Comparing different software often brings up issues, especially in a task area that is not 
clearly defined, as tokenization is. As mentioned at the beginning, the scenarios for which 
tokenization is used differ considerably, which has an influence on the design and applica­
bility of the software. In fact, comparing off­the­shelf solutions with tailor­made tools is 
always unfair. Therefore, it should be clearly stated that the following comparisons refer to 
the presented scenario only. In addition, secondary functions of the different tools are not 
taken into account, like the return of token classes or normalization, even though they can 
be essential in other scenarios and can have a negative impact especially with regard to 
speed. The tools are only tested via command line interfaces, so we do not take into account 
different programming languages. If no native command line tool exists, we have written 
minimal wrappers following instructions, which should be taken into account regarding 
speed comparisons as well. We also consider the tools only with respect to a single language 
(German), while many tools have a primary focus on cross­language applicability. Further­
more, the hardware and software architecture used has a strong influence on the results. As 
mentioned in Section 3, our tests disfavour applications that can use dedicated GPU sup­
port, for example. We provide the full test suite in the form of a Dockerfile1 to make it rep­
licable for other users and on other systems. Table 2 (at the end of this article) provides an 
overview of our evaluation for all tools in the categories presented.

4.1 Tools

The evaluated tools are all available under different open licenses and represent in our eyes 
the state of the art with respect to tokenization and sentence segmentation for German, al­
though we cannot claim to be exhaustive.

Our tools for token and sentence boundary detection

 – KorAP-Tokenizer2 is rule­based and compiles, using the lexical analysis generator 
framework JFlex,3 a list of regular expressions into a deterministic finite state automaton 
that can introduce segment boundaries at terminal nodes. The ruleset is based on Apache 
Lucene’s tokenizer and has been extensively modified. Rulesets are available for English, 
French and German. KorAP­Tokenizer is used productively for tokenization and (among 
other tools) for sentence segmentation of DeReKo.

 – Datok4 (Diewald 2022) is rule­based and generates an extended deterministic finite state 
automaton based on a reduced finite state transducer generated by XFST (Beesley/Kart­

1 https://github.com/KorAP/Tokenizer­Evaluation.
2 https://github.com/KorAP/KorAP­Tokenizer.
3 https://jflex.de/.
4 https://github.com/KorAP/Datok.
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tunen 2003). The ruleset of KorAP­Tokenizer was translated to XFST for this purpose. 
The generation is done with Foma (Hulden 2009). Rulesets are only available for German 
at this time. Datok is currently being evaluated experimentally.

Tools for token and sentence boundary detection

 – BlingFire5 is rule­based and compiles a deterministic finite state automaton based on 
regular expressions, which segments at terminal nodes. The tested model is implement­
ed cross­language with a focus on English.

 – Cutter (Graën/Bertamini/Volk 2018) is rule­based and recursively applies language­spe­
cific and language­independent rules to a text to segment it. Compared to other rule­
based tools, Cutter uses a context­free rather than a regular grammar.

 – JTok6 is based on cascading regular expressions that segment tokens until they can be 
assigned to a token class. Rules exist for English, German and Italian.

 – OpenNLP7 is a framework that offers tokenizers and sentence segmenters in different 
models, both based on maximum entropy. In addition, OpenNLP offers SimpleTokenizer, 
a tool based on simple character class decisions.

 – SoMaJo (Proisl/Uhrig 2016) is rule­based and applies a list of regular expressions to seg­
ment a text. SoMaJo won first place in the competition of the aforementioned EmpiriST 
2015 Shared Task for tokenizing German language Web and CMC corpora and has been 
regularly improved since then. SoMaJo is available specifically for German.

 – SpaCy8 is a framework in which the tokenization stage is rule­based and runs in several 
phases in which the tokens are split into increasingly finer segments. Rulesets are pro­
vided for numerous languages. Different models are offered for sentence segmentation: 
Sentencizer is rule­based, Dependency performs a syntactic analysis, Statistical segments 
based on a simple statistical model.

 – Stanford Tokenizer9 is rule­based, and relies on JFlex (see KorAP­Tokenizer) to compile 
a deterministic finite state automaton based on a list of regular expressions that can in­
troduce segment boundaries at terminal nodes.

 – Syntok10 is rule­based and applies successive separation rules, primarily in the form of 
regular expressions, to an input string for segmentation. There is both a tokenizer and a 
sentence segmenter based on it. Syntok was the fastest tokenizer in Ortmann/Roussel/
Dipper (2019). Rules exist for Spanish, English, and German.

 – Waste (Jurish/Würzner 2013) is based on a hidden Markov model in which a pre­seg­
mented stream of (pseudo)tokens are re­evaluated at the boundaries found and classified 
as to whether they are word­initial or sentence­initial.

5 https://github.com/microsoft/BlingFire.
6 https://github.com/DFKI­MLT/JTok.
7 https://opennlp.apache.org/.
8 https://spacy.io/.
9 https://nlp.stanford.edu/software/tokenizer.shtml.
10 https://github.com/fnl/syntok.
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Tools for token boundary detection only

 – Elephant11 (Evang et al. 2013) is an ML system for segmentation based on Conditional 
Random Fields and Recurrent Neural Networks. We evaluate here a wrapper implemen­
tation12 (Moreau/Vogel 2018) that considers only token segmentation and not sentence 
segmentation, although Elephant provides both.

 – TreeTagger (Schmid 1994) is a part­of­speech tagger that carries a separate rule­based 
tokenization tool that also uses a set of regular expressions to segment a text. The to­
kenizer does not itself introduce markers for sentence boundaries.

Tools for sentence boundary detection only

 – Deep-EOS (Schweter/Ahmed 2019) is based on different implementations of neural net­
works with long short­term memory (LSTM), bidirectional LSTM, and convolutional 
neural networks. It is not based on pre­tokenization and operates directly on character 
streams.

 – NNSplit13 is an ML approach based on a byte­level LSTM neural network.

In the list of tools we compare here, it is striking that rule­based procedures still dominate 
tokenization even in modern frameworks, although this is decreasing in other areas of NLP. 
For sentence boundary recognition, on the other hand, ML techniques seem to be slowly 
replacing rule­based procedures in this area. ML methods have experienced an increase in 
importance in recent years due to the availability of large corpora and more powerful com­
puters. But deterministic methods have also benefited (albeit to a lesser extent), through the 
efficient application of arbitrarily large rulesets and almost arbitrarily large lexicons.

4.2 Performance: speed

Tokenization is not only an NLP problem that can be considered relatively simple, but also 
one that takes little time to process (compared to, e. g., syntactic parsing). Therefore, when 
evaluating new tokenizers for research, it is uncommon to specify the runtime. This is slow­
ly changing in the context of machine learning, where tokenizers are used as a pre­process­
ing step for training with very large data sets and speed is therefore of greater importance. 
But when processing very large corpora in a research context, runtime must be taken into 
account as well.

For the benchmarking, the novel “Effi Briest” by Theodor Fontane in the Project Gutenberg 
version was used (with a total of 98,207 tokens14). The measures correspond to the average 
value of 100 runs. Since the length of a text can have an impact on performance, a tenfold 
concatenation of the text was also tested.

Figure 1 compares the speed of all tools we measured in terms of “tokens per millisecond”.15 
Detailed values are listed in Table 1.

11 https://gmb.let.rug.nl/elephant/.
12 https://github.com/erwanm/elephant­wrapper.
13 https://bminixhofer.github.io/nnsplit/.
14 Based on the information provided by the Unix tool ‘wc ­w’.
15 The test system is an Intel Xeon CPU E5­2630 v2 @ 2.60GHz with 12 cores and 64 GB of RAM.
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Fig. 1: Speed comparison of all tested tools with different models and configurations

With respect to DeReKo, these times can be extrapolated for individual cores. Our experi­
mental tool Datok (Model “matok”) is the fastest tool in the comparison and could complete­
ly tokenize and sentence segment DeReKo within ~13.5h,16 closely followed by BlingFire 
with ~33h. KorAP­Tokenizer currently takes ~193h for the same task, just over 8 days. Most 
other rule­based off­the­shelf tools for tokenization are also in the same range. SoMaJo, 
which is to be emphasized with respect to German CMC data (s. sec. 4.3), would require 
about 72 days (without direct parallelization).17 Cutter was not able to fully segment the 
large batch size and would have taken just over 4 years to segment DeReKo at small batch 
sizes. In particular, Deep­EOS and NNsplit show that their use without dedicated hardware 
(GPU) is not an option for sentence segmentation in our scenario: full processing of DeReKo 
would take between 1.7 and almost 6.4 CPU years on the hardware used, with this being in 
addition to tokenization. NNSplit admits to poor performance in terms of CPU­only usage 
and claims to be twice as fast as SpaCy’s Sentencizer in GPU usage18. A similar speed in­
crease should be expected with Deep­EOS.

It can be seen that the speed of tokenization and sentence segmentation is a variable to be 
considered for large data sets, and not all tools are capable of complete data resegmentation 
in an acceptable amount of time. It should be noted though that even slower tokenizers like 
Elephant and SoMaJo (on one core) can still process over 8,000 tokens in one second – and 
are perfectly adequate for most scenarios and corpus sizes.

4.3 Performance: quality

Even though processing speed is the focus of our review, a high quality of tokenization is of 
primary importance in the aforementioned scenario. The evaluation of tool quality in an 
NLP context is typically operationalized via a comparison to a Gold Standard. Already in the 

16 All extrapolations are based on the measured values of “1 x Effi” in Table 1.
17 SoMaJo supports the use of multiple processor cores, which we have included in our benchmarks, but 

is less of an issue, as parallelization happens at a higher level in our scenario.
18 https://bminixhofer.github.io/nnsplit/#benchmark
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seemingly simple case of tokenization, however, the definition of what a token is and where 
its boundaries are leaves room for interpretation (s. sec. 2). Therefore, it is not appropriate 
to speak of “correct” or “incorrect” for a tokenization – it often depends on the field of ap­
plication what makes a token an independent entity (s. sec. 3). This has to be taken into 
account for evaluation related to existing corpora that may follow different guidelines. The 
same holds for sentence boundaries.

We use the EmpiriST Web and CMC corpora as well as version 2.9 of the German Universal 
Dependency GSD Corpus (McDonald et al. 2013) in our evaluation of tokenization. We also 
use the latter for evaluating sentence boundary detection. We rely on the EmpiriST soft­
ware19 as the tool for computing F1 values.

Token boundary detection

All tools except the OpenNLP Simple Tokenizer achieve an F1 score well above 99% for the 
UD corpus (s. Tab. 1). For the web corpus, SoMaJo, Cutter, TreeTagger, KorAP­Tokenizer and 
Datok also achieve more than 99%. With respect to the CMC corpus, SoMaJo, Stanford To­
kenizer, TreeTagger, Cutter, KorAP­Tokenizer, and Datok achieve an F1 score above 95%. 
Regarding our preference to use only one tool for different corpora, we consider them more 
suitable for our purposes. Nonetheless, the evaluation of quality is not very meaningful with 
respect to KorAP­Tokenizer and Datok, since rule­based approaches can be optimized for 
the evaluation data, and thus in many cases perfect accuracy can be achieved (with limita­
tions, s. sec. 4.6). Accordingly, they cannot be compared with the evaluation within Em­
piriST, which was about testing against unknown data.

Tool V. Model UD-GSD 
(Tokens)

EmpiriST-
CMC

EmpiriST-
Web

UD-GSD
(Sentent-
ces)

1 x Effi 10 x Effi

F1 F1 F1 F1 T/ms T/ms

KorAP- 
Tokenizer

2.2.2 99.45 99.06 99.27 96.87 72.90 199.28

Datok 0.1.5 datok 99.45 98.79 99.21 97.60 614.72 2304.13

matok 1041.63 2798.78

BlingFire 0.1.8 wbd.bin 99.25 55.85 95.80 ­ 431.92 1697.73

sbd.bin ­ ­ ­ 95.90 417.10 1908.87

Cutter 2.5 99.47 96.24 99.38 97.31 0.38 ­

JTok 2.1.19 99.56 58.44 98.09 97.92 31.19 117.22

OpenNLP 1.9.4 Simple 95.70 55.26 91.69 ­ 290.71 1330.23

Tokenizer 
(de­ud­gsd)

99.67 65.22 97.58 ­ 74.65 145.08

SentenceDet.
(de­ud­gsd)

­ ­ ­ 98.51 247.84 853.01

SoMaJo 2.2.0 p=1 99.46 99.21 99.87 97.05 8.15 8.41

p=8 27.32 39.91

19 The comparison tool was developed by Stephanie Evert and published under GPL v3. For the evaluation 
of the sentence boundaries, the segmented sentences are taken instead of single tokens.
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Tool V. Model UD-GSD 
(Tokens)

EmpiriST-
CMC

EmpiriST-
Web

UD-GSD
(Sentent-
ces)

1 x Effi 10 x Effi

F1 F1 F1 F1 T/ms T/ms

SpaCy 3.2.3 Tokenizer 99.49 69.94 98.29 ­ 19.73 44.40

Sentencizer ­ ­ ­ 96.80 16.94 40.58

Statistical ­ ­ ­ 97.16 4.90 10.01

Dependency ­ ­ ­ 96.93 2.24 0.48

Stanford 4.4.0 tokenize 99.93 97.71 98.46 ­ 75.47 156.24

tokenize,ssplit, 
mwt

98.22 46.95 91.56

Syntok 1.4.3 Tokenizer 99.41 70.76 97.50 ­ 103.90 108.40

Segmenter ­ ­ ­ 97.50 59.66 61.07

Waste 2.0.20­1 99.55 65.90 98.49 97.46 141.07 144.95

Elephant 0.2.3 99.62 66.96 97.88 ­ 8.57 8.68

Tree- 
Tagger

3.2.4 99.52 95.58 99.27 ­ 69.92 72.98

Deep-EOS 0.1 bi­lstm­de ­ ­ ­ 97.47 0.25 0.24

cnn­de ­ ­ ­ 97.49 0.27 0.25

lstm­de ­ ­ ­ 97.47 0.29 0.27

NNSplit 0.5.8 ­ ­ ­ 95.55 0.90 0.90

Table 1:  Overview of all compared tools and models with their performance measures (best three high­
lighted in each category)

Moreover, the quality with respect to the applied machine learning tools says less about the 
implementation or the algorithm than about the corpus used for training. Thus, we compare 
here “off­the­shelf” solutions with default configurations for the outlined scenario without 
checking whether a tool trained and adjusted for our purposes would achieve better 
results.

Taking this expected bias into account, the results show that high tokenization speed does 
not require any compromises in terms of quality. Furthermore, the comparison of the three 
evaluated datasets shows that approaches exist that work across genres and thus facilitate 
the use in the outlined scenario.

Sentence boundary detection

All tools show F1 values above 95% and can therefore be considered suitable for sentence 
boundary detection. Stanford and the OpenNLP model show values above 98%. They were 
also developed and trained using the test corpus. Our tools KorAP­Tokenizer and Datok 
perform weaker in relation – a readjustment is desirable.
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4.4 Extensibility and adaptability

Machine learning­based approaches have the advantage of being easily transferable to other 
languages or genres in the presence of appropriately annotated corpora. “This is why 
[Moreau and Vogel] argue that the evaluation of software tools should progressively shift 
the focus from accuracy in a specific language to robustness and adaptability to a wide 
range of languages.” (Moreau/Vogel 2018, p.  1119). Also, with respect to novel linguistic 
phenomena (as they occur in various CMC corpora mentioned above), rule­based approach­
es are in principle inferior, since they cannot deal with unknown phenomena to begin with. 
However, SoMaJo’s win at EmpiriST 2015 shows that a rule­based system designed for ex­
tensibility nevertheless offers advantages that can make it competitive in many scenarios. 
Graën/Bertamini/Volk (2018) even put their main focus regarding their rule­based system 
Cutter on extensibility and on iterative adaptation to new languages.

The good adaptability of rule­based systems with respect to new language phenomena is 
largely due to the pattern­like nature of these entities, such as email addresses, emoticons, 
or XML fragments. These can be well formulated in rule­based terms. Extralinguistic units 
also occur in other word­segmented languages (Graën/Bertamini/Volk 2018), which makes 
them language-independent. Language-specific rules, on the other hand, include general 
definitions of words and how to deal with punctuation, especially in sentence segmentation. 
In addition, there are usually lists of common abbreviations (for the correct treatment of 
periods, e. g. “etc.”) and known proper names with non­alphabetic symbols (e. g. “3G+”) in 
that language. As mentioned in Section 4.1, both KorAP­Tokenizer and Datok are based on 
widely used and well documented frameworks for the rule definition of lexical analysers. 
Both systems can be adapted with little training, especially with regard to the various lists 
that can be extended without any knowledge of syntax. By reusing the language­independ­
ent rules, the approaches can also be adapted for other languages with manageable effort. 
This has already been done for KorAP­Tokenizer with respect to English and French.

4.5 Reproducibility and maintainability

A distinct advantage of rule­based systems over machine­learning approaches, especially in 
the scientific context, is the reproducibility of tokenization. Thus, errors can be traced back 
to individual rules, which can be easily and likewise systematically corrected, validated 
with reference to regression tests (cf. Graën/Bertamini/Volk 2018), and versioned. Correc­
tions can be made consistently across the data. Trained machine learning approaches have 
the disadvantage that an extended corpus must first be created in order to (re­)train the 
tools. And only very extensive and difficult­to­maintain tests can ensure that re­training 
does not cause regressions. Rule­based approaches therefore allow for a good balance be­
tween correctness and reproducibility in the processing of scientific research data.

In terms of maintainability, data consistency, and runtime, it is also advantageous if token 
and sentence segmentation can be performed with a single tool, based on the same model.

Also of importance for maintainability are short development cycles. Training and testing 
machine­learning methods is time­consuming and can often be solved in acceptable time 
only with special hardware. Compiling complex finite state automata of rule­based ap­
proaches can also lead to significant time and resource consumption. Systems like SoMaJo 
or Cutter can be tested without intermediate steps while providing good extensibility, which 
simplifies their maintenance. Separating the language model from program code also facil­
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itates maintenance and versioning. In the case of machine­learning, this is usually the case, 
but rule­based approaches also often have separate language models, for example Cutter, 
but also (in part) the JFlex­based tools such as Stanford­Tokenizer and KorAP­Tokenizer, and 
Datok’s XFST model.

Tool Tokens & 
Sentences

Speed Quality Extensibi-
lity

Adaptabi-
lity

Maintain-
ability

Reprodu-
cibility

KorAP-Tokenizer ••• •• ••• ••• •• •• •••

Datok ••• ••• ••• ••• • •• •••

BlingFire •• ••• • •• •• •• •••

Cutter ••• ­ ••• •••• •••• •••• •••

JTok ••• •• • •• • •• •••

OpenNLP •• •• • • ••• • ­

SoMaJo ••• • •••• ••• • •••• •••

SpaCy •• • • ••• ••• •• ••

Stanford •• •• ••• ••• •• •• •••

Syntok ••• •• • ••• •• • •••

Waste ••• •• • • •• • ­

Elephant • • • • •• • ­

TreeTagger • •• ••• ••• • ••• •••

Deep-EOS • ­ •• • ••• •• ­

NNSplit • ­ • • ••• •• ­

Table 2:  Overview of all compared tools with ratings in the examined categories

4.6 Limitations

There are some fundamental limitations regarding single­pass finite state systems that need 
to be considered, nonetheless, and that apply to our approaches.

Graën/Bertamini/Volk (2018) primarily point out long­distance relationships between to­
kens as a weakness of finite state based systems and as an example refer to the use of the 
apostrophe in German as a possessive marker for words ending in a phonetic /s/. These 
apostrophes must belong to the preceding token in the possessive case, but can also repre­
sent the end of an expression in simple quotation marks. Without the context of a starting 
quotation expression, a decision in a finite state­based approach is not possible – according­
ly, neither KorAP­Tokenizer nor Datok can make these decisions.

Furthermore, the strict left­longest­match directive means that sometimes valid tokens can 
never be segmented. An example would be (following general word and URL rules) the 
string “Go tohttp://google.com/”, in which a space was omitted by mistake and which would 
currently not be segmented into the expected tokens “Go”, “to” and “http://google.com/” by 
both KorAP­Tokenizer and Datok, since “tohttp” is considered a valid word token and is a 
longest­match accordingly. The subsequent tokens would be further segmented as the URL 
rule would not apply. More limitations concern the processing of emoji sequences, which 
are difficult to represent in strict finite­state models without character ranges.
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5. Summary

Tokenization and sentence boundary detection for texts of word­segmented writing sys­
tems belong to the simpler and faster tasks of NLP, and already with naïve approaches good 
results can be achieved. However, tokenization errors can have a cascading effect on further 
analysis steps, which is why high quality is of great importance. The emergence of new 
token types and very large data volumes in the context of unedited, heterogeneous CMC 
corpora pose further new challenges, especially in research data processing.

In this paper, different tokenizers are compared with respect to this scenario for German in 
terms of their processing speed, quality, extensibility, adaptability, maintainability and repro­
ducibility. We also present the approaches that are being pursued in building DeReKo.

We believe that processing speed for very large data is a dimension that should not be 
neglected and that approaches are possible that do not have to compromise on quality with 
respect to heterogeneous data. In our opinion, the maintainability and reproducibility of 
process results of rule­based systems represent a further advantage over machine­learning 
approaches (at least currently), especially in the context of research data processing. But 
this assessment is only a snapshot: Future developments in this area as well as changes to 
the scenario described make constant re­evaluations necessary.

We would like to acknowledge the helpful comments of the anonymous reviewers, which 
clearly contributed to the improvement of the present study.
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