

Jon MILLS, University of Luton

Lexicon Based Critical Tokenisation: An Algorithm

Abstract

In some languages, spaces and punctuation marks are used to delimit word boundaries. This is the case with
Cornish. However there is considerable inconsistency of segmentation to be found within the Corpus of Cornish.
The individual texts that make up this corpus are not even internally consistent. The first stage in lemmatising
the Corpus of Comish, therefore, involves the resegmentation of the corpus into tokens. The whole notion of
what is considered to be a word has to be examined. A method for the logical representation of segmentation into
tokens is proposed in this paper. The existing segmentation of the Corpus of Cornish, as indicated by spaces in
the text, is abandoned and an algorithm for dictionary based critical tokenisation of the corpus is proposed.

Keywords: lexicography, tokenisation, lemmatisation, segmentation, Comish

1. Introduction

We tend to take for granted the unit that we loosely call a word. In languages such as English,
words are delimited by spaces and punctuation marks. The task of tokenisation may,
consequently, seem trivial. Some languages such as Chinese and Japanese, however, do not
have explicit token delimiters. In such languages a sentence is a string of characters with no
English blank space equivalent. Languages with conjunctive orthography such as Finnish and
Shona have few word delimiters. Such orthographic practices make tokenisation a serious
problem for Natural Language Processing in these languages. The problem also exists when
working from the medieval manuscripts which are the source of the Corpus of Cornish.

Sentence word tokenisation is the process of converting a sentence into a string of words.
Because most Natural Language Processing applications take words as basic processing units,
it is a common stage in the preprocessing of a text. Given a string of characters generated by
removing blank spaces that function as word delimiters from a natural language sentence, a
natural problem is to discover a way to restore these blank spaces (Guo Jin 1996:1).

2. Types, Tokens and Tones

The token-type distinction originates with the philosopher Charles Peirce. However Peirce
discriminates between tokens, types and tones. These three emerge as manifestations of three
modes of reality: existential reality, the reality of law, and the reality of qualities (Winder
1996).

Tokens equate with existential reality. In other words, a token belongs to the existential
world. When we say that a sign is a token, we are indicating what is absolutely unique in its
occurrence, its place in time and space (Winder 1996). With regard to a text corpus, tokens
are, thus, simply text positions.

Types equate with the reality of law. A type is a sign that represents the law-like generality of
a class. Unlike tokens, we cannot point to a type anymore than we can point to the law of

 1 / 8 1 / 8

EURALEX '98 PROCEEDINGS

gravity. Although types are real, they do not belong to the existential world in which pointing
is possible (Winder 1996). With regard to a text, one can say that it has a vocabulary of X
number of word types.

Tones equate with the reality of qualities. In any given investigation, there are certain
perceptual units that cannot or will not be analysed. These are qualities. Although we may
recognise the general form of a scrawl, we may not distinguish individual letters. We cognise
some quality whether we recognise the form or not. In other words, whatever interpretation
we may finally bring to something, our first impression has a value which is distinct from
time and space and distinct from law. That value is tone. With regard to text, one has an
awareness of more than one actually uses for reading purposes. For example a letter may be
smeared and the spacing of the text may vary. Such qualities may be perceived but the reader
can choose to ignore them. The tones of a text are, thus, defined as those qualities which one
does indeed wish to consider as fundamental yet unanalysable in a given analysis. For
example, usually alphanumeric characters are considered unanalysable. In other words, the
reader does not analyse them into bars and curves, or distinguish them according to pitch in
proportional spacing (Winder 1996).

Figure 1 shows an extract from the 16th century Cornish miracle play, Beunans Meriasek
(Ton 1504: 19). Below is a transcription and translation of the extract in Figure 1.

From this extract it can be seen that the two lines of handwriting in the original actually
represent five lines of verse. That it is indeed verse is evident from the rhyming of alternate
lines and the metre of seven syllables per line. The transcription shows three instances of the
word the. These occurences represent three word tokens but only one word type. Figure 2
shows the tone of the first occurrence of the.

Figure 1

Inter dula du avan
ov map gruaff the kemynna
kemmer the roule the honan
gul nahen me ny alia
ov banneth dis

Between the hands of God above
My son, I do commend thee
Take thine own rule:
Do aught else I cannot
My blessing to thee

Figure 2

214

 2 / 8 2 / 8

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

In order to read the original manuscript, it is necessary firstly to define the alphabet that is
employed, and secondly to segment text into lines and words. Segmenting the text into words
is known as word tokenisation.

3. Character Based Tokenisation

There are essentially two approaches to word tokenisation, character based tokenisation and
lexicon based tokenisation. Character based tokenisation assumes that there are certain
characters, such as the letters of the alphabet, that occur within words. It is similarly assumed
that certain other characters, such as spaces and punctuation, occur between words. There can
be, however, certain problems with these assumptions. In a language such as English, for
example, some characters occur both within and between words. The hyphen occurs both
within compounds and between parts of a sentence. The ' symbol is used both within words
as an apostrophe and as a closing inverted comma. The space can occur within a single
lexeme such as New York. The comma can occur within a number such as 1,000. The fullstop
can occur within a time such as 12.45 pm. Conversely, in English, words are not always
delimited by characters, for example gimme and haven't. Character based tokenisation does
not provide a foolproof way of segmenting text into tokens. It does, however, act as a guide to
the eye when reading a text. Character based tokenisation may be fine tuned by employing a
lexicon of exceptions. This approach is a combination of character based tokenisation and
lexicon based tokenisation. Whilst character based tokenisation works fairly well for some
languages such as English, other languages, such as Chinese and Japanese do not have
explicit word delimiters. In the extract from Beunans Meriasek in Figure 1, it can be seen that
spaces between words are frequently omitted or not clear.

4. Lexicon Based Tokenisation

Lexicon based tokenisation is allied to Peirce's concepts of token, type and tone. The very
notion of type implies a lexicon. The lexicon is, thus, derived from the text. Whilst,
conversely and simultaneously, knowledge of the lexicon enables interpretation of the text.
Figure 3 illustrates an algorithm for lexicon based tokenisation.

215

 3 / 8 3 / 8

EURALEX '98 PROCEEDINGS

Figure 3

Dictionary
a
bird
black
blackbird
peter
saw
Figure 4

Figure 4 represents a very simple dictionary to be used with the algorithm in Figure 3. Given
the algorithm in Figure 3 and the dictionary in Figure 4, if we input the string,

"petersawablackbird",
the system will return the output,

[peter,saw,a,black,bird].
There are two problems with this algorithm. Firstly, if the string contains items which are not
in the lexicon, tokenisation fails. Thus the string,

"marysawablackbird",

2 1 6

 4 / 8 4 / 8

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

will not tokenise. Secondly, a given critical segment may contain one, or more than one, word
type. Alternative readings are, thus, possible. The algorithm, however, finds only one
solution. The order that items are listed in the dictionary determines the outcome. So since
bird and black are both listed in the dictionary before blackbird, the system selects
[black,bird] and [blackbird] is not chosen.

There are two types of ambiguity involved, combinatorial ambiguity and overlapping ambig­
uity (Guo Jin 1996). Combinatorial ambiguity refers to critical segments that consist of one or
more than one word type. Figure 5 shows some examples of combinatorial ambiguity.

Overlapping ambiguity may be defined as follows. Given a character string ABC, if the
substrings A, AB, BC and C are all words in dictionary, the string ABC is said to have
overlapping ambiguity, as there exists an overlap between the word AB and the word BC.
Thus, in English, the string "fundsand" can be tokenised as either "funds and" or "fund sand".
Similarly the string "toplace" can be tokenised as either "to place" or "top lace" (Guo Jin
1996: 3).

The algorithm in Figure 3 was implemented in the Prolog programming language. Prolog is a
declarative programming language which uses unification to find all the solutions to a goal. If
we run our Figure 3 algorithm in Prolog by setting the goal

?- tokemse("petersawablackbird",X).
then the system will find all the possible tokenisations of the string, thus

X = [peter,saw,a,black,bird];
X = [peter,saw,a,blackbird].

However, tokenisation will still fail if the string contains a word that is not in the dictionary.
A complete dictionary is, therefore, needed. A complete dictionary is one in which all valid
words are included and there are no unknown words. Guo Jin (1996: 2-3) points out that
although a linguistically complete dictionary is never within reach, an operationally complete
dictionary is trivial to compile. One simple way is to add all the characters in the alphabet to
the dictionary as single character words. These then spell out unknown words which can be
glued back at a later stage. Guo Jin's solution thus combines lexicon based tokenisation and
character based tokenisation.

Figure 6 shows all the possible solutions to the string when all the characters in the alphabet
have been added to the dictionary as single character words. The solutions have been sorted
so that the solutions with the least number of tokens occur at the top of the list, blackbird is,
thus, listed before black,bird, and black,bird is listed before black,b,i,r,d. This manner of
sorting I have named 'Longest First Tokenisation'. Its purpose is to present what are possibly
the more plausible solutions first

Blackbird
Below
Today

black bird
be low
to day

Figure 5

217

 5 / 8 5 / 8

EURALEX '98 PROCEEDINGS

?- tokenize(Mpetersawablackbird").
[peter,saw,a,blackbird]
[peter,saw,a,black,bird]
[peter,saw,a,black,b,i,r,d]
[peter,saw,a,b,l,a,c,k,bird]
[peter,saw,a,b,l,a,c,k,b,i,r,d]
[peter,s,a,w,a,blackbird]
[peter,s,a,w,a,black,bird]
[peter,s,a,w,a,black,b,i,r,d]
[peter,s,a,w,a,b,l,a,c,k,bird]
[Deter,s,a,w,a,b,l,a,c,k,b,i,r,d]
|p,e,t,e,r,saw,a,blackbird]
[p,e,t,e,r,saw,a,black,bird]
[p,e,t,e,r,saw,a,black,b,i,r,d]
[p,e,t,e,r,saw,a,b,l,a,c&bird]
[p,e,t,e,r,saw,a,b,l,a,c,k,b,i,r,d]
[p,e,t,e,r,s,a,w,a,blackbird]
|p,e,t,e,r)s,a,w,a,black)bird]
[p,e,t,e,r,s,a,w,a,black,b,i,r,d]
|p,e,t,e,r,s,a,w,a,b,l,a,c,k,bird]

Figure 6

5. Critical Tokenisation

It is necessary to represent a text that has been tokenised in such a way that both individual
tokens and individual types can be identified. Lager (1996 : 34) describes how segments and
points form a basis for tokenisation. A critical point in a text is that which delimits two
adjacent segments. Conversely a critical segment of text is that which is delimited by two
points in the text. Segments are, thus, located in time and space. Segments can be observed,
pointed at and given unique names. Segments and strings are not the same. Segments are
instances of strings. Two segments may be instances of the same string. Segments are, thus,
tokens, whereas strings are types. Figure 7 shows how critical tokenisation can be applied to
the first line of the fragment of the Cornish miracle play shown in Figure 1.

Figure 8 shows how the principles of critical tokenisation may be applied to the fragment of
the Cornish miracle play shown in Figure 1 in order to create a Prolog database. The text is
arranged vertically with each token on a separate line. Each token is represented by a three

Critical Points

Figure 7

218

 6 / 8 6 / 8

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

token(1, 2, inter).
token(2, 3,dula).
token(3, 4, du).
token(4, 5, avan).
token(5, 6, ov).
token(6, 7, map).
token(7, 8,gruaff).
token(8, 9, the).
token(9,10, kemynna).
token(10,11, kemmer).
token(12,13, the).
token(13,14, roule).
token(14,15, the).
token(15,16, honan).
token(16,17, gul).
token(17,18, nahen).
token(18,19, me).
token(19,20, ny).
token(21,22, alia).
token(23,24, ov).
token(24,25, banneth).
token(25,26, dis).

Figure 8

With the text in the form of a database it is possible to conduct various types of search. For
example, if one wants to know what word type is found between critical points 2 and 3, one
sets the goal,

?- token(2,3,T).
The system returns,

T = dula
Conversely, if one wants to know in what text positions the word type dula is found, one sets
the goal,

?-token(X,Y,dula).
The system returns,

X = 2
Y = 3

If one wants the phrase found between critical points 1 and 5, one sets the goal,
?- get_segment(l,5,Segment).

The system returns,
Segment = [inter,dula,du,avanj.

If one wants an alphabetical list of all the word types attested in the text, one sets the goal,
?-setofiT^XAYAtokenpC,Y,T),List).

The system returns,
List = [avan,du,dula,gniaff4nterJcemmer^emynna^nap,ov,the]

219

place predicate. The first and second arguments are the critical points which define the
segment covered by the token. The third argument is the word type of which the token is an
instance.

 7 / 8 7 / 8

EURALEX '98 PROCEEDINGS

The process is, thus, seen to be founded on a type of quotation, which we call an 'attestation'.
In this manner, routines can be written in Prolog to produce frequency wordlists, concor­
dances, lists of collocations and other types of data.

6. References

Guo, Jin (1996) "An Efficient and Complete Algorithm for Unambiguous Word Boundary
Identification" Available: http://sunzi.iss.nus.sg: 1996/guojin/papers/acbci/acbci.rtf.

Grefenstette, Gr. & P. Tapanainen (1994) "What is a Word, What is a Sentence? Problems of
Tokenization" Available: grefen@xerox.fr, tapanai@.xerox.fr.

Lager, T. (1995) A Logical Approach to Computational Corpus Linguistics Gothenburg
Monographs in Linguistics 14. Gothenburg: Department of Linguistics, Goteborg
University.

Ton, R. (1504) Beunans Meriasek Ms. Peniarth 105. National Library of Wales.
Winder, W. (1996) "Reading the Text's Mind: Lemmatisation and Interpretation from
a Peircean Perspective" Available http://www.chass.utoronto.ca:8080/epc/chwp/
winder/.

220

Powered by TCPDF (www.tcpdf.org)

 8 / 8
Powered by TCPDF (www.tcpdf.org)

 8 / 8

http://www.tcpdf.org

